DNStorm Documentation
Release 1.0

Vinicius Massuchetto

August 05, 2015






Contents

10

11

12

13

14

About

Status

Build a test and development installation
CSS

E-mails

Localization
Documentation
Deploying on Heroku
Models

Utility functions
Ajax actions views
Base views

Signals

Indices and tables

Python Module Index

11

13

15

17

19

21

23

25

27

29







CHAPTER 1

About

DNStorm is an experiment in decision-making theory made by Vinicius Massuchetto and Willy Hoppe de Sousa for the

Master Program in Nuclear Technology Applications of the Institute of Energy and Nuclear Research and University
of Sao Paulo in Brazil.

This is a simple collaborative platform that allows managers to state problems and ask for contributions of quantified
ideas from a web brainstorming processes that will build the problem and solution presentation in the format of a
strategy table.

The project’s fancy page presents the software in a non-technical language. Sphinx documentation can be found at
Read the Docs. A live demo and experimental environment can be found on Heroku.



http://vmassuhetto.github.io/dnstorm
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4453533E8
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4751001U6
http://ipen.br
http://usp.br
http://usp.br
http://en.wikipedia.org/wiki/Brainstorming
http://www.structureddecisionmaking.org/tools/toolsstrategytables
http://vmassuchetto.github.io/dnstorm
http://dnstorm.readthedocs.org/en/latest/
http://dnstorm.herokuapp.com/

DNStorm Documentation, Release 1.0

2 Chapter 1. About



CHAPTER 2

Status

The development status is in its alpha stages. Feel free to help by reporting bugs and development suggestions on
Github issues.



https://github.com/vmassuchetto/dnstorm/issues

DNStorm Documentation, Release 1.0

4 Chapter 2. Status



CHAPTER 3

Build a test and development installation

The project uses Python 2.7. Make sure your python, virtualenv and pip binaries meets this version.
Clone the repository and go the project’s root to build the environment:

git clone git@github.com:vmassuchetto/dnstorm.git
cd dnstorm

Start a virtual environment, load it and install the required packages from the requirements.txt file. After
this, make sure all the command line used from here is executed in this virtual environment (has the (env) on the
command prompt).

virtualenv —--distribute env
source env/bin/activate
pip install -r requirements.txt

Setup the SQLite3 database:

python manage.py syncdb
python manage.py migrate

Run your server:

python manage.py runserver

The application might be running at http://localhost:8000.




DNStorm Documentation, Release 1.0

6 Chapter 3. Build a test and development installation



CHAPTER 4

CSS

For hosting environment reasons, the compiled static/scss/app.css is already in the project’s repository. That
means you don’t need to go further if you’re not developing.

The project’s CSS uses the Foundation <http://foundation.zurb.com>_ framework and is generated with Sass.
DNStorm uses a set of Grunt and Bower packages for the static files. To install everything via nodejs:

npm install
./node_modules/bower/bin/bower install

And to generate the static CSS:

./node_modules/grunt-cli/bin/grunt build

If you’re editing the main static/scss/app.scss file, you might want to use grunt watch instead.



http://sass-lang.com
http://gruntjs.com
http://bower.io

DNStorm Documentation, Release 1.0

8 Chapter 4. CSS



CHAPTER 5

E-mails

E-mail receival in development mode can be checked by a SMTP debugging server:

python -m smtpd -n -c DebuggingServer localhost:1025




DNStorm Documentation, Release 1.0

10 Chapter 5. E-mails



CHAPTER 6

Localization

The PO and MO files for each language are located in dnstorm/app/locale/<locale_code>/LC_MESSAGES.
To generate a PO file for a given locale code run this:

source env/bin/activate
cd dnstorm/app/

python ../../manage.py makemessages -1 <locale code>

11


http://stackoverflow.com/a/3191729/513401

DNStorm Documentation, Release 1.0

12 Chapter 6. Localization



CHAPTER 7

Documentation

To generate the Sphinx documentation files:

source env/bin/activate
cd docs
make <documentation format>

Usually you might want to replace <documentation format> with html.

13


http://sphinx-doc.org/

DNStorm Documentation, Release 1.0

14 Chapter 7. Documentation



CHAPTER 8

Deploying on Heroku

In order to successfully deploy on Heroku this project needs the following setup:
¢ package. json file must be deleted
* bower. json must be deleted
e dnstorm/app/static/components directory must be included

* dnstorm/settings/heroku.py file must be created accordingly to the sample configuration file on
dnstorm/settings/heroku—-sample.py

You can create another he roku branch to deploy to the heroku remote like this:

git push heroku heroku:master

15



DNStorm Documentation, Release 1.0

16 Chapter 8. Deploying on Heroku



CHAPTER 9

Models

class dnstorm.app.models.Alternative (*args, **kwargs)
Alternatives are the strategy table rows where ideas can be allocated.

£ill data (user=Fualse)
Fill the alternative with problem and user-specific data.

class dnstorm.app.models.Comment (*args, **kwargs)
Comments that can be made for ideas or problems.

class dnstorm.app.models.Criteria (*args, **kwargs)
When creating a problem, managers should define some criterias as a reference for the ideas submitted by users.
These will also be the columns for the strategy table of the problem.

class dnstorm. app.models.Idea (*args, **kwargs)
Ideas are the second main entity in the platform, as the problem-solving process requires idea generation and
participation of users. These will after compose the strategy table.

£fill data (user=False)
Fill the idea with problem and user-specific data.

class dnstorm.app.models.IdeaCriteria (*args, **kwargs)
Builds the relationship between ideas and criteria for the user to enter a description about the judgements of
each criteria of the problem.

class dnstorm.app.models.Invitation (*args, **kwargs)
Invitations are used to add non-registered users as contributors of problems. The user will have access granted
to the problem on registration.

class dnstorm.app.models.Option (*args, **kwargs)
Meta-based table to store general site options retrieved via the get method.

Attributes:
* name unique entry key
* value value for the key

get (*args)
The site options are defined and saved by the OptionsForm fields, and this method ensures that some value
or a default value will be returned when querying for an option value. None is returned if the option name
is invalid.

get_all()
Get all the default values.

17



DNStorm Documentation, Release 1.0

get_defaults (*args, **kwargs)
These are some default values that are used in templates and somewhere else. They are supposed to be
overwritten by values on database.

update ( *args)
Update a value based on the option name.

class dnstorm. app.models.Problem (*args, **kwargs)
Problems are the central entity of the platform, as everything goes around them. This is no more than the
suubject of discussion for generating ideas and a strategy table.

Permissions flags are the following:
e published: if the problem is published or in draft mode
* open: open contribution mode — anyone will be able to edit objects
* public: if the problem can be viewed by non-collaborators
Attributes:

e last_activity Gets updated in favor of the Act ivityManager ordering every time an idea or
a comment is made for this problem.

class dnstorm. app.models.Vote (*args, **kwargs)
Votes for ideas, comments or alternatives.

18 Chapter 9. Models



cHAPTER 10

Utility functions

dnstorm.app.utils.activity_count (0bj)
Increments the activity stream counter of the followers of the given object to make a Facebook look and feel on
the top bar.

dnstorm.app.utils.activity_register (_user, _action_object)
Registers and activity when an object is saved. Takes a diff with a previous version of edited objects, put it as
message content in a timeline, uses the verbs ‘created’ or ‘edited’ for actions on actstream.

dnstorm.app.utils.activity_reset_counter (user)
Resets the activity stream counter for a user.

dnstorm.app.utils.email_context (more_context={})
Puts more_context with the standard context variables required for sending e-mails.

dnstorm.app.utils.get_object_or_none (klass, *args, **kwargs)
Get an object and return None if not found.

dnstorm.app.utils.get_option (name)
Wrapper for get method of Option class. A tribute to WordPress.

dnstorm.app.utils.get_user (username)
Return user information.

dnstorm.app.utils.is_email (_string)
Checks if a string is an e-mail.

dnstorm.app.utils.update_option (name, value)
Wrapper for update method of Option class. A tribute to WordPress.

19



DNStorm Documentation, Release 1.0

20

Chapter 10. Utility functions



CHAPTER 11

Ajax actions views

21



DNStorm Documentation, Release 1.0

22

Chapter 11. Ajax actions views



CHAPTER 12

Base views

23



DNStorm Documentation, Release 1.0

24

Chapter 12. Base views



CHAPTER 13

Signals

dnstorm.app.signals.create_notice_types (app, created_models, verbosity, **kwargs)
Register notification types for django-notification.

dnstorm.app.signals.login_on_registration (sender, user, request, **kwargs)
Logs in the user after registration.

25



DNStorm Documentation, Release 1.0

26

Chapter 13. Signals



CHAPTER 14

Indices and tables

* genindex
* modindex

e search

27



DNStorm Documentation, Release 1.0

28

Chapter 14. Indices and tables



Python Module Index

d

dnstorm.app.models, 17
dnstorm.app.signals, 25
dnstorm.app.utils, 19

29



DNStorm Documentation, Release 1.0

30

Python Module Index



Index

A

activity_count() (in module dnstorm.app.utils), 19
activity_register() (in module dnstorm.app.utils), 19
activity_reset_counter() (in module dnstorm.app.utils), 19
Alternative (class in dnstorm.app.models), 17

C

Comment (class in dnstorm.app.models), 17

create_notice_types() (in module dnstorm.app.signals),
25

Criteria (class in dnstorm.app.models), 17

D

dnstorm.app.models (module), 17
dnstorm.app.signals (module), 25
dnstorm.app.utils (module), 19

E

email_context() (in module dnstorm.app.utils), 19

F

fill_data() (dnstorm.app.models.Alternative method), 17
fill_data() (dnstorm.app.models.Idea method), 17

G

get() (dnstorm.app.models.Option method), 17
get_all() (dnstorm.app.models.Option method), 17
get_defaults() (dnstorm.app.models.Option method), 17
get_object_or_none() (in module dnstorm.app.utils), 19
get_option() (in module dnstorm.app.utils), 19
get_user() (in module dnstorm.app.utils), 19

Idea (class in dnstorm.app.models), 17
IdeaCeriteria (class in dnstorm.app.models), 17
Invitation (class in dnstorm.app.models), 17
is_email() (in module dnstorm.app.utils), 19

L

login_on_registration() (in module dnstorm.app.signals),
25

O

Option (class in dnstorm.app.models), 17

P

Problem (class in dnstorm.app.models), 18

U

update() (dnstorm.app.models.Option method), 18
update_option() (in module dnstorm.app.utils), 19

V

Vote (class in dnstorm.app.models), 18

31



	About
	Status
	Build a test and development installation
	CSS
	E-mails
	Localization
	Documentation
	Deploying on Heroku
	Models
	Utility functions
	Ajax actions views
	Base views
	Signals
	Indices and tables
	Python Module Index

