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CHAPTER 1

About

DNStorm is an experiment in decision-making theory made by Vinicius Massuchetto and Willy Hoppe de Sousa for the

Master Program in Nuclear Technology Applications of the Institute of Energy and Nuclear Research and University
of Sao Paulo in Brazil.

This is a simple collaborative platform that allows managers to state problems and ask for contributions of quantified
ideas from a web brainstorming processes that will build the problem and solution presentation in the format of a
strategy table.

The project’s fancy page presents the software in a non-technical language. Sphinx documentation can be found at
Read the Docs. A live demo and experimental environment can be found on Heroku.



http://vmassuhetto.github.io/dnstorm
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4453533E8
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?metodo=apresentar&id=K4751001U6
http://ipen.br
http://usp.br
http://usp.br
http://en.wikipedia.org/wiki/Brainstorming
http://www.structureddecisionmaking.org/tools/toolsstrategytables
http://vmassuchetto.github.io/dnstorm
http://dnstorm.readthedocs.org/en/latest/
http://dnstorm.herokuapp.com/
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CHAPTER 2

Status

The development status is in its alpha stages. Feel free to help by reporting bugs and development suggestions on
Github issues.



https://github.com/vmassuchetto/dnstorm/issues
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CHAPTER 3

Build a test and development installation

The project uses Python 2.7. Make sure your python, virtualenv and pip binaries meets this version.
Clone the repository and go the project’s root to build the environment:

git clone git@github.com:vmassuchetto/dnstorm.git
cd dnstorm

Start a virtual environment, load it and install the required packages from the requirements.txt file. After
this, make sure all the command line used from here is executed in this virtual environment (has the (env) on the
command prompt).

virtualenv —--distribute env
source env/bin/activate
pip install -r requirements.txt

Setup the SQLite3 database:

python manage.py syncdb
python manage.py migrate

Run your server:

python manage.py runserver

The application might be running at http://localhost:8000.
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CHAPTER 4

CSS

For hosting environment reasons, the compiled static/scss/app.css is already in the project’s repository. That
means you don’t need to go further if you’re not developing.

The project’s CSS uses the Foundation <http://foundation.zurb.com>_ framework and is generated with Sass.
DNStorm uses a set of Grunt and Bower packages for the static files. To install everything via nodejs:

npm install
./node_modules/bower/bin/bower install

And to generate the static CSS:

./node_modules/grunt-cli/bin/grunt build

If you’re editing the main static/scss/app.scss file, you might want to use grunt watch instead.



http://sass-lang.com
http://gruntjs.com
http://bower.io
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CHAPTER 5

E-mails

E-mail receival in development mode can be checked by a SMTP debugging server:

python -m smtpd -n -c DebuggingServer localhost:1025
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CHAPTER 6

Localization

The PO and MO files for each language are located in dnstorm/app/locale/<locale_code>/LC_MESSAGES.
To generate a PO file for a given locale code run this:

source env/bin/activate
cd dnstorm/app/

python ../../manage.py makemessages -1 <locale code>

11


http://stackoverflow.com/a/3191729/513401
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CHAPTER 7

Documentation

To generate the Sphinx documentation files:

source env/bin/activate
cd docs
make <documentation format>

Usually you might want to replace <documentation format> with html.

13


http://sphinx-doc.org/
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CHAPTER 8

Deploying on Heroku

In order to successfully deploy on Heroku this project needs the following setup:
¢ package. json file must be deleted
* bower. json must be deleted
e dnstorm/app/static/components directory must be included

* dnstorm/settings/heroku.py file must be created accordingly to the sample configuration file on
dnstorm/settings/heroku—-sample.py

You can create another he roku branch to deploy to the heroku remote like this:

git push heroku heroku:master

15
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CHAPTER 9

Models

class dnstorm.app.models.Alternative (*args, **kwargs)
Alternatives are the strategy table rows where ideas can be allocated.

£ill data (user=Fualse)
Fill the alternative with problem and user-specific data.

class dnstorm.app.models.Comment (*args, **kwargs)
Comments that can be made for ideas or problems.

class dnstorm.app.models.Criteria (*args, **kwargs)
When creating a problem, managers should define some criterias as a reference for the ideas submitted by users.
These will also be the columns for the strategy table of the problem.

class dnstorm. app.models.Idea (*args, **kwargs)
Ideas are the second main entity in the platform, as the problem-solving process requires idea generation and
participation of users. These will after compose the strategy table.

£fill data (user=False)
Fill the idea with problem and user-specific data.

class dnstorm.app.models.IdeaCriteria (*args, **kwargs)
Builds the relationship between ideas and criteria for the user to enter a description about the judgements of
each criteria of the problem.

class dnstorm.app.models.Invitation (*args, **kwargs)
Invitations are used to add non-registered users as contributors of problems. The user will have access granted
to the problem on registration.

class dnstorm.app.models.Option (*args, **kwargs)
Meta-based table to store general site options retrieved via the get method.

Attributes:
* name unique entry key
* value value for the key

get (*args)
The site options are defined and saved by the OptionsForm fields, and this method ensures that some value
or a default value will be returned when querying for an option value. None is returned if the option name
is invalid.

get_all()
Get all the default values.

17
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get_defaults (*args, **kwargs)
These are some default values that are used in templates and somewhere else. They are supposed to be
overwritten by values on database.

update ( *args)
Update a value based on the option name.

class dnstorm. app.models.Problem (*args, **kwargs)
Problems are the central entity of the platform, as everything goes around them. This is no more than the
suubject of discussion for generating ideas and a strategy table.

Permissions flags are the following:
e published: if the problem is published or in draft mode
* open: open contribution mode — anyone will be able to edit objects
* public: if the problem can be viewed by non-collaborators
Attributes:

e last_activity Gets updated in favor of the Act ivityManager ordering every time an idea or
a comment is made for this problem.

class dnstorm. app.models.Vote (*args, **kwargs)
Votes for ideas, comments or alternatives.
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cHAPTER 10

Utility functions

dnstorm.app.utils.activity_count (0bj)
Increments the activity stream counter of the followers of the given object to make a Facebook look and feel on
the top bar.

dnstorm.app.utils.activity_register (_user, _action_object)
Registers and activity when an object is saved. Takes a diff with a previous version of edited objects, put it as
message content in a timeline, uses the verbs ‘created’ or ‘edited’ for actions on actstream.

dnstorm.app.utils.activity_reset_counter (user)
Resets the activity stream counter for a user.

dnstorm.app.utils.email_context (more_context={})
Puts more_context with the standard context variables required for sending e-mails.

dnstorm.app.utils.get_object_or_none (klass, *args, **kwargs)
Get an object and return None if not found.

dnstorm.app.utils.get_option (name)
Wrapper for get method of Option class. A tribute to WordPress.

dnstorm.app.utils.get_user (username)
Return user information.

dnstorm.app.utils.is_email (_string)
Checks if a string is an e-mail.

dnstorm.app.utils.update_option (name, value)
Wrapper for update method of Option class. A tribute to WordPress.

19



DNStorm Documentation, Release 1.0

20

Chapter 10. Utility functions



CHAPTER 11

Ajax actions views

21
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CHAPTER 12

Base views

23
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CHAPTER 13

Signals

dnstorm.app.signals.create_notice_types (app, created_models, verbosity, **kwargs)
Register notification types for django-notification.

dnstorm.app.signals.login_on_registration (sender, user, request, **kwargs)
Logs in the user after registration.

25
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CHAPTER 14

Indices and tables

* genindex
* modindex

e search

27
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Python Module Index

d
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dnstorm.app.signals, 25
dnstorm.app.utils, 19
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